ГОСТ 28147-89

09-10-2023

Перейти к: навигация, поиск
ГОСТ 28147-89
Создатель:

КГБ, 8-е управление

Создан:

1989 г.

Опубликован:

1990 г.

Размер ключа:

256 бит

Размер блока:

64 бит

Число раундов:

32\16

Тип:

Сеть Фейстеля

ГОСТ 28147-89 — советский и российский стандарт стандартом СНГ. Полное название — «ГОСТ 28147-89 Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования». Блочный шифроалгоритм. При использовании метода шифрования с гаммированием, может выполнять функции поточного шифроалгоритма.

По некоторым сведениям[1], история этого шифра гораздо более давняя. Алгоритм, положенный впоследствии в основу стандарта, родился, предположительно, в недрах Восьмого Главного управления КГБ СССР (ныне в структуре ФСБ), скорее всего, в одном из подведомственных ему закрытых НИИ, вероятно, ещё в 1970-х годах в рамках проектов создания программных и аппаратных реализаций шифра для различных компьютерных платформ.

С момента опубликования ГОСТа на нём стоял ограничительный гриф «Для служебного пользования», и формально шифр был объявлен «полностью открытым» только в мае 1994 года. История создания шифра и критерии разработчиков по состоянию на 2010 год не опубликованы.

Описание

ГОСТ 28147-89 — блочный шифр с 256-битным ключом и 32 циклами преобразования, оперирующий 64-битными блоками. Основа алгоритма шифра — Сеть Фейстеля. Базовым режимом шифрования по ГОСТ 28147-89 является режим простой замены (определены также более сложные режимы гаммирование, гаммирование с обратной связью и режим имитовставки). Для зашифрования в этом режиме открытый текст сначала разбивается на две половины (младшие биты — A, старшие биты — B[2]). На i-ом цикле используется подключ Ki:

( = двоичное «исключающее или»)

Для генерации подключей исходный 256-битный ключ разбивается на восемь 32-битных блоков: K1…K8.

Ключи K9…K24 являются циклическим повторением ключей K1…K8 (нумеруются от младших битов к старшим). Ключи K25…K32 являются ключами K1…K8, идущими в обратном порядке.

После выполнения всех 32 раундов алгоритма, блоки A33 и B33 склеиваются (обратите внимание, что старшим битом становится A33, а младшим — B33) — результат есть результат работы алгоритма.

Расшифрование выполняется так же, как и зашифрование, но инвертируется порядок подключей Ki.

Функция вычисляется следующим образом:

Ai и Ki складываются по модулю 232.

Результат разбивается на восемь 4-битовых подпоследовательностей, каждая из которых поступает на вход своего узла таблицы замен (в порядке возрастания старшинства битов), называемого ниже S-блоком. Общее количество S-блоков ГОСТа — восемь, то есть столько же, сколько и подпоследовательностей. Каждый S-блок представляет собой перестановку чисел от 0 до 15. Первая 4-битная подпоследовательность попадает на вход первого S-блока, вторая — на вход второго и т. д.

Если S-блок выглядит так:

1, 15, 13, 0, 5, 7, 10, 4, 9, 2, 3, 14, 6, 11, 8, 12

и на входе S-блока 0, то на выходе будет 1, если 4, то на выходе будет 5, если на входе 12, то на выходе 6 и т. д.

Выходы всех восьми S-блоков объединяются в 32-битное слово, затем всё слово циклически сдвигается влево (к старшим разрядам) на 11 битов.

Узлы замены (S-блоки)

Все восемь S-блоков могут быть различными. Фактически, они могут являться дополнительным ключевым материалом, но чаще являются параметром схемы, общим для определенной группы пользователей. В ГОСТ Р 34.11-94 для целей тестирования приведены следующие S-блоки:

Номер S-блока Значение
1 4 10 9 2 13 8 0 14 6 11 1 12 7 15 5 3
2 14 11 4 12 6 13 15 10 2 3 8 1 0 7 5 9
3 5 8 1 13 10 3 4 2 14 15 12 7 6 0 9 11
4 7 13 10 1 0 8 9 15 14 4 6 12 11 2 5 3
5 6 12 7 1 5 15 13 8 4 10 9 14 0 3 11 2
6 4 11 10 0 7 2 1 13 3 6 8 5 9 12 15 14
7 13 11 4 1 3 15 5 9 0 10 14 7 6 8 2 12
8 1 15 13 0 5 7 10 4 9 2 3 14 6 11 8 12

Данный набор S-блоков используется в криптографических приложениях ЦБ РФ.[3]

В тексте стандарта указывается, что поставка заполнения узлов замены (S-блоков) производится в установленном порядке, то есть разработчиком алгоритма. Сообщество российских разработчиков СКЗИ согласовало используемые в Интернет узлы замены, см. RFC 4357.

Достоинства ГОСТа

  • бесперспективность силовой атаки (XSL-атаки в учёт не берутся, так как их эффективность на данный момент полностью не доказана);
  • эффективность реализации и соответственно высокое быстродействие на современных компьютерах.
  • наличие защиты от навязывания ложных данных (выработка имитовставки) и одинаковый цикл шифрования во всех четырех алгоритмах ГОСТа.

Криптоанализ

В мае 2011 года известный криптоаналитик Николя Куртуа доказал существование атаки на данный шифр, имеющей сложность в 28 (256) раз меньше сложности прямого перебора ключей при условии наличия 264 пар открытый текст/закрытый текст. [4][5]Данная атака не может быть осуществлена на практике ввиду слишком высокой вычислительной сложности.

Критика ГОСТа

Основные проблемы ГОСТа связаны с неполнотой стандарта в части генерации ключей и таблиц замен. Считается, что у ГОСТа существуют «слабые» ключи и таблицы замен, но в стандарте не описываются критерии выбора и отсева «слабых». Также стандарт не специфицирует алгоритм генерации таблицы замен (S-блоков). С одной стороны, это может являться дополнительной секретной информацией (помимо ключа), а с другой, поднимает ряд проблем:

  • нельзя определить криптостойкость алгоритма, не зная заранее таблицы замен;
  • реализации алгоритма от различных производителей могут использовать разные таблицы замен и могут быть несовместимы между собой;
  • возможность преднамеренного предоставления слабых таблиц замен лицензирующими органами РФ;
  • потенциальная возможность (отсутствие запрета в стандарте) использования таблиц замены, в которых узлы не являются перестановками, что может привести к чрезвычайному снижению стойкости шифра.

Возможные применения

Примечания

  1. Алгоритм шифрования ГОСТ 28147-89, его использование и реализация для компьютеров платформы Intel x86
  2. В описании стандарта ГОСТ обозначены как N1 и N2 соответственно
  3. Шнайер Б. Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си, 2-е издание — М.: Триумф, 2002, 14.1
  4. Security Evaluation of GOST 28147-89 In View Of International Standardisation. Cryptology ePrint Archive: Report 2011/211
  5. SecurityLab: Взломан блочный шифр ГОСТ 28147-89
  6. Using the GOST 28147-89, GOST R 34.11-94, GOST R 34.10-94, and GOST R 34.10-2001 Algorithms with Cryptographic Message Syntax (CMS) (англ.) (May 2006). — Архивировано из первоисточника 24 августа 2011.
  7. GOST 28147-89 Cipher Suites for Transport Layer Security (TLS) (англ.) (December 2008). — Internet-Drafts, work in progress. Проверено 21 июня 2009. Архивировано из первоисточника 24 августа 2011.
  8. Using GOST 28147-89, GOST R 34.10-2001, and GOST R 34.11-94 Algorithms for XML Security (англ.) (December 2008). — Internet-Drafts, work in progress. Проверено 21 июня 2009. Архивировано из первоисточника 24 августа 2011.

См. также

Ссылки

  • ГОСТ 28147—89 «Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования»
  • Сергей Панасенко. Стандарт шифрования ГОСТ 28147-89 (рус.) (15 августа 2007). Проверено 3 августа 2012.
  • Сайт об алгоритме шифрования ГОСТ 28147-89


  • ГОСТы для OpenSSL. — криптографический проект компании ООО «Криптоком» по добавлению российских криптографических алгоритмов в библиотеку OpenSSL. Проверено 16 ноября 2008. Архивировано из первоисточника 24 августа 2011.

Литература

  • Мельников В. В. Защита информации в компьютерных системах. — М.: Финансы и статистика, 1997.
  • Романец Ю. В.. Тимофеев П. А., Шаньгин В. Ф. Защита информации в компьютерных системах и сетях. — М.: Радио и связь, 1999.
  • Харин Ю. С., Берник В. И., Матвеев Г. В. Математические основы криптологии. — Мн.: БГУ, 1999.
  • Герасименко В. А., Малюк А. А. Основы защиты информации. — М.: МГИФИ, 1997.
  • Леонов А. П., Леонов К. П., Фролов Г. В. Безопасность автоматизированных банковских и офисных технологий. — Мн.: Нац. кн. палата Беларуси, 1996.
  • Зима В. М.. Молдовян А. А., Молдовян Н. А. Компьютерные сети и защита передаваемой информации. — СПб.: СПбГУ, 1998.
  • Шнайер Б. 14.1 Алгоритм ГОСТ 28147-89 // Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си = Applied Cryptography. Protocols, Algorithms and Source Code in C. — М.: Триумф, 2002. — С. 373-377. — 816 с. — 3000 экз. — ISBN 5-89392-055-4.
  • Popov, V., Kurepkin, I., and S. Leontiev Additional Cryptographic Algorithms for Use with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94 Algorithms (англ.) // RFC 4357. — IETF, January 2006.

ГОСТ 28147-89.

© 2011–2023 stamp-i-k.ru, Россия, Барнаул, ул. Анатолия 32, +7 (3852) 15-49-47