Многочлены Лежандра

23-10-2023

Многочлен Лежа́ндра — многочлен, который в наименьшей степени отклоняется от нуля в смысле среднего квадратического. Образует ортогональную систему многочленов, на отрезке по мере Лебега. Многочлены Лежандра могут быть получены из многочленов ортогонализацией Грама ― Шмидта.

Названы по имени французского математика Адриен Мари Лежандра.

Содержание

Определение

Полиномы Лежандра и присоединённые функции Лежандра первого и второго рода

Рассмотрим дифференциальное уравнение вида

(УравнПолЛеж)

где  — комплексная переменная. Решения этого уравнения при целых имеют вид многочленов, называемых многочленами Лежандра. Полином Лежандра степени можно представить через формулу Родрига в виде[1]

Часто вместо записывают косинус полярного угла:

Уравнение (УравнПолЛеж) можно получить из частного случая гипергеометрического уравнения, называемого уравнением Лежандра

(УравнЛеж)

где ,  — произвольные комплексные постоянные. Интерес представляют его решения, являющиеся однозначными и регулярными при (в частности, при действительных ) или когда действительная часть числа больше единицы. Его решения называют присоединёнными функциями Лежандра или шаровыми функциями. Подстановка вида в (УравнЛеж) даёт уравнение Гаусса, решение которого в области принимает вид

где F — гипергеометрическая функция. Подстановка в (УравнЛеж) приводит к решению вида

определённым на . Функции и называют функциями Лежандра первого и второго рода.[2]

Справедливы соотношения[3]

и

Формулы с

  • Многочлены Лежандра также определяются по следующим формулам:
, если ;
, если .

Рекуррентная формула

Формулы с разложениями

  • Многочлены Лежандра также определяются следующими разложениями:


для ± :


и для ± :

Следовательно,

Присоединённые многочлены Лежандра

  • Присоединённые многочлены Лежандра определяются по формуле:

которую также можно представить в виде:

При функция совпадает с .

Матрица функции многочлена Лежандра

\begin{pmatrix} 
0 & 0 & -2 & 0 & 0 & \vdots & 0 & \vdots & 0 \\
0 & 2 & 0 & -6 & 0 & \vdots & 0 & \vdots & \vdots \\
0 & 0 & 6 & 0 & -12 &\vdots & 0 & \vdots & \vdots \\
0 & 0 & 0 & 12 & 0 & \vdots & 0 & \vdots & \vdots \\
0 & 0 & 0 & 0 & 20 & \vdots & 0 & \vdots & \vdots \\
\dots & \dots & \dots & \dots & \dots & \ddots & \vdots & \dots & \vdots \\
0 & 0 & 0 & 0 & 0 &\dots & k(k+1) &\dots & \vdots \\
\dots & \dots & \dots & \dots & \dots &\dots & \dots & \ddots & \vdots \\
0 & 0 & 0 & 0 & 0 & \dots & 0 & \dots & n(n+1) \\
\end{pmatrix}

Эта матрица является верхнетреугольной. Её определитель равен нулю, а собственные значения равны , где .

Примеры

Первые 6 многочленов Лежандра.

Первые многочлены Лежандра равны:

Поскольку , то

Свойства

  • Для , степень равна n.
  • Сумма коэффициентов многочлена Лежандра равна 1.
  • Уравнение имеет ровно различных корней на отрезке
  • Пусть . Тогда:
Что также можно записать как:

где  — символ Кронекера.

  • Для , норма равна:
  • Нормированная функция многочленов Лежандра связана с нормой следующим соотношением:
  • При каждом система присоединённых функций Лежандра полна в .
  • В зависимости от и присоединённые многочлены Лежандра могут быть как чётными, так и нечётными функциями:
  •  — четная функция;
  •  — нечетная функция.
  • , поскольку , а .
  • Для , .

Ряды многочленов Лежандра

Разложение липшицевой функции в ряд многочленов Лежандра

Липшицевая функция является функцией со свойством:

, где .

Эта функция разлагается в ряд многочленов Лежандра.

Пусть  — пространство непрерывных отображений на отрезке , и .

Пусть

тогда удовлетворяет следующему условию:

Пусть и удовлетворяет следующим условиям:

  1. , где

Липшецевую функцию можно записать следующим образом:

Разложение голоморфной функции

Всякая функция f, голоморфная внутри эллипса с фокусами −1 и +1, может быть представлена в виде ряда:

Теорема сложения

Для величин, удовлетворяющих условиям , , , — действительное число, можно записать теорему сложения для полиномов Лежандра первого рода:[4]

или, в альтернативной форме через гамма-функцию:

Для полиномов Лежандра второго рода теорема сложения выглядит как[5]

при условиях , , ,

Функции Лежандра

Многочлены Лежандра (вместе с присоединёнными функциями Лежандра ) естественно возникают в теории потенциала.

Шаровые функции — это функции (в сферических координатах ) вида (с точностью до константы)

и

где  — присоединённые многочлены Лежандра;

а точнее вида , где  — сферические функции.

Шаровые функции удовлетворяют уравнению Лапласа всюду в .

Примечания

Литература

  • Бейтмен Г., Эрдейи А. Высшие трансцендентные функции = Higher Transcendental Functions / Пер. Н. Я. Виленкина. — Изд. 2-е,. — М.: Наука, 1973. — Т. 1. — 296 с. — 14 000 экз.
  • Владимиров В. С., Жаринов В. В. Уравнения математической физики. — М.: Физматлит, 2004. — ISBN 5-9221-0310-5
  • Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. — Изд. 4-е, перераб. — М.: Государственное издательство физико-математической литературы, 1963. — 19 000 экз.
  • Кампе де Ферье Ж., Кемпбелл Р., Петьо Г., Фогель Т. Функции математической физики. — М.: Физматлит, 1963.
  • Никольский С. М. Квадратурные формулы. — М.: Наука, 1988.

Многочлены Лежандра.

© 2011–2023 stamp-i-k.ru, Россия, Барнаул, ул. Анатолия 32, +7 (3852) 15-49-47