Мультипликативная группа

26-08-2023

Группа (математика)
Теория групп
См. также: Портал:Физика

Гру́ппа  — непустое множество с определённой на нём бинарной операцией, удовлетворяющей указанным ниже аксиомам.

Группы являются важными инструментами в изучении симметрии во всех её проявлениях. Ветвь математики, занимающаяся группами, называется теорией групп.

Примерами групп являются вещественные числа с операцией сложения, множество вращений плоскости вокруг начала координат и т. п.

Содержание

Определения

Непустое множество с заданной на нём бинарной операцией называется группой , если выполнены следующие аксиомы:

  1. ассоциативность: ;
  2. наличие нейтрального элемента: ;
  3. наличие обратного элемента:

Комментарии

  • Элемент , обратный элементу , единственен.
  • В определении группы 2-ю и 3-ю аксиомы можно заменить одной аксиомой существования обратной операции:
  • Вышеприведённые аксиомы не являются строго минимальными. Для существования нейтрального и обратного элементов достаточно наличия левого нейтрального () и левого обратного () элементов. При этом они автоматически являются и :

Связанные определения

  • В общем случае от группы не требуется выполнения свойства коммутативности
    • Пары элементов , для которых выполнено равенство , называются перестановочными или коммутирующими.
    • Множество элементов, перестановочных со всеми элементами группы, называется центром группы.
    • Группа, в которой любые два элемента коммутируют, называется коммутативной или абелевой.
  • Подгруппа — подмножество группы , которое является группой относительно операции, определённой в .
  • Порядок группы  — мощность (то есть число её элементов).
    • Если множество конечно, то группа называется конечной.

Примеры

  • Целые числа с операцией сложения. группа с нейтральным элементом 0. Она является абелевой.
  • Положительные рациональные числа с операцией умножения. Произведение рациональных чисел — снова рациональное число, обратный элемент к рациональному числу представляется обратной дробью, имеется ассоциативность и единица.
  • Свободная группа с двумя образующими () состоит из пустого слова, которое мы обозначаем (это единица нашей группы), и всех конечных слов из четырёх символов и таких, что не появляется рядом с и не появляется рядом с . Операция умножения таких слов — это просто соединение (конкатенация) двух слов в одно с последующим сокращением пар и .

Стандартные обозначения

Мультипликативная запись

Обычно групповую операцию называют (абстрактным) умножением; тогда применяется мультипликативная запись:

  • результат операции называют произведением и записывают или ;
  • нейтральный элемент обозначается «1» и называется единицей;
  • обратный к a элемент записывается как .

Кратные произведения записывают в виде натуральных степеней [1]. Для элемента корректно[2] определена целая степень, следующим образом:

,
.

Для степени элемента справедливо . В частности, .

Аддитивная запись

В коммутативной группе определяющая операция часто рассматривается как (абстрактное) сложение и записывается аддитивно:

  • пишут «a + b» и называют получившийся элемент суммой элементов a и b;
  • обозначают нейтральный элемент «0» и называют его нулём;
  • обратный элемент к a обозначают как «−a» и называют его противоположным к a элементом;
  • запись сокращают следующим образом: a + (-b) = a — b;
  • выражения вида a + a, a + a + a, -a — a, … обозначают символами 2a, 3a, −2a, …

Простейшие свойства

  • Обратный к данному элемент всегда определяется однозначно.
  • (a−1)−1 = a, aman = am+n, (am)n = amn.
  • (ab)−1 = b−1a−1.
  • Верны законы сокращения:
,
.
  • Обратный элемент к нейтральному есть сам нейтральный элемент.
  • Группа содержит единственное решение x любого уравнения x · c = b или c · x = b; то есть в группе возможны однозначно определённые правое и левое «деление».
  • Пересечение двух подгрупп группы G есть подгруппа группы G.
  • Теорема Лагранжа: если G — группа конечного порядка g, то порядок g1 любой её подгруппы G1 является делителем порядка группы. Из этого следует, что и порядок любого элемента делит порядок группы.
  • Для определения числа подгрупп в группе используются теорема Лагранжа и теоремы Силова.

Способы задания группы

Группу можно задать:

История

Идея группы появилась в исследованиях перестановок корней алгебраических уравнений, начиная с работ Лагранжа (1771), Руффини (1799), Абеля (1826) Галуа (1831). Лагранж исследовал решения уравнений степени три и четыре, тогда как Руффини, Абель и Галуа показали неразрешимость в радикалах общего уравнения степени пять и выше. Галуа первым использовал термин «группа» в его современном смысле.

Основываясь на разработках других областей, таких как теория чисел и геометрия, понятие группы было обобщено и аксиоматически определено Кронекером в 1870 году.

Обобщения

См. также

Примечания

  1. Натуральная степень элемента корректно определяется благодаря ассоциативности
  2. Корректность вытекает из единственности обратного элемента.

Литература

Популярная литература

  • Александров П. С. Введение в теорию групп. — Т. 7. — («Библиотечка Квант»).
  • Садовский Л., Аршинов М. Группы // Квант. — 1976. — № 10.

Научная литература

  • Белоногов В. А. Задачник по теории групп. М.: Наука, 2000.
  • Каргаполов М. И., Мерзляков Ю. И. Основы теории групп. М.: Наука, 1982.
  • Кострикин А. И. Введение в алгебру. М.: Наука, 1977.
  • Курош А. Г. Теория групп. (3-е изд.). М.: Наука, 1967.
  • Холл М. Теория групп. М.: Издательство иностранной литературы, 1962.
  • Gorenstein D. Finite groups. N.Y.: Harper and Row, 1968.
  • Huppert B. Endliche Gruppen. I.B.: Springer, 1967.

Мультипликативная группа.

© 2011–2023 stamp-i-k.ru, Россия, Барнаул, ул. Анатолия 32, +7 (3852) 15-49-47