Трансурановые элементы

17-10-2023

Трансура́новые элеме́нты (заурановые элементы, трансураны) — радиоактивные химические элементы, расположенные в периодической системе элементов Д. И. Менделеева за ураном, то есть с атомным номером выше 92.

Элементы с атомным номером более 100 называются трансфермиевыми элементами. Одиннадцать из известных трансурановых элементов (93—103) принадлежит к числу актиноидов. Трансурановые элементы с атомным номером более 103 называются трансактиноидами, более 120 — суперактиноидами.

Все известные изотопы трансурановых элементов имеют период полураспада значительно меньший, чем возраст Земли. Поэтому, хотя теории Острова стабильности и т.н. магических ядер оболочечного строения допускают возможность долгоживущего и стабильного существования даже сверхтяжёлых трансактиноидов, известные трансурановые элементы практически отсутствуют в природе и получаются искусственно посредством различных ядерных реакций. Элементы до фермия включительно образуются в ядерных реакторах в результате захвата нейтронов и последующего бета-распада. Трансфермиевые элементы образуются только в результате слияния ядер.

Первый из трансурановых элементов нептуний Np (п. н. 93) был получен в 1940 г. бомбардировкой урана нейтронами. За ним последовало открытие плутония (Pu, п. н. 94), америция (Am, п. н. 95), кюрия (Cm, п.н. 96), берклия (Bk, п. н. 97), калифорния (Cf, п. н. 98), эйнштейния (Es, п. н. 99), фермия (Fm, п. н. 100), менделевия (Md, п. н. 101), нобелия (No, п. н. 102) и лоуренсия (Lr, п. н. 103). По состоянию на 2012 год, синтезированы также трансактиноиды с порядковыми номерами 104—118; в этом ряду имена присвоены элементам 104—112, 114, 116: резерфордий (Rf, 104), дубний (Db, 105), сиборгий (Sg, 106), борий (Bh, 107), хассий (Hs, 108), мейтнерий (Mt, 109), дармштадтий (Ds, 110), рентгений (Rg, 111), коперниций (Cn, 112), флеровий (Fl, 114), ливерморий (Lv, 116). Элементы 113, 115, 117, 118 пока имеют временные названия, производные от соответствующих латинских числительных: унунтрий[1] (Uut, 113), унунпентий[2] (Uup, 115), унунсептий[3] (Uus, 117), унуноктий[4] (Uuo, 118). Также предпринимались попытки синтеза следующих сверхтяжёлых трансурановых элементов, в т.ч. были заявления о синтезе элемента унбиквадий (124) и косвенных свидетельствах о элементах унбинилий (120) и унбигексий (126), которые пока не подтверждены.

Химические свойства лёгких трансурановых актиноидов, получаемых в весовых количествах, изучены более или менее полно; трансфермиевые элементы (Md, No, Lr и так далее) изучены слабо в связи с трудностью получения и короткими временами жизни. Кристаллографические исследования, изучение спектров поглощения растворов солей, магнитных свойств ионов и других свойств показали, что элементы с п. н. 93—103 — аналоги лантаноидов. Из всех трансурановых элементов наибольшее применение нашёл нуклид плутония 239Pu как ядерное топливо.

Первые трансурановые элементы были синтезированы в начале 40-х годов XX века в Национальной лаборатории имени Лоуренса в Беркли (США) группой учёных под руководством Эдвина Макмиллана и Глена Сиборга, удостоенных Нобелевской премии за открытие и изучение этих элементов. Синтезирование новых трансурановых элементов и изотопов проводилось и продолжается также в Ливерморской национальной лаборатории в США, Объединённом институте ядерных исследований в СССР/России (Дубна), Европейском Центре по изучению тяжёлых ионов имени Гельмгольца в Германии, Институте физико-химических исследований в Японии и других лабораториях[5] [6] В последние десятилетия над синтезом элементов в американских, немецком и российском центрах работают международные коллективы.

Поиски сверхтяжёлых трансурановых элементов в природе пока не увенчались успехом. Обнаружение в землях Челекена элемента сергения (108) в начале 1970-х гг подтверждено не было. В 2008 году было объявлено об обнаружении элемента экатория-унбибия (122) в образцах природного тория[7], однако это заявление в настоящее время оспаривается на основании последних попыток воспроизведения данных с использованием более точных методов. В 2011 году российские ученые сообщили об открытии в метеоритном веществе следов столкновений с частицами с атомными числами от 105 до 130, что может являться косвенным доказательством существования стабильных сверхтяжелых ядер[8].

См. также

Примечания

  1. Временное название для 113-го элемента; предложены названия беккерелий, японий, рикений, нихоний.
  2. Временное название для 115-го элемента; предложено название ланжевений.
  3. Временное название для 117-го элемента;.
  4. Временное название для 118-го элемента; предложено название московий.
  5. Институт в Дубне стал четвертым в мире по количеству открытых изотопов
  6. англ. {{{1}}} Isotope ranking reveals leading labs
  7. Evidence for a long-lived superheavy nucleus with atomic mass number A=292 and atomic number Z=~122 in natural Th». ArXiv.org. Проверено 2008-04-28.
  8. В космических лучах нашли сверхтяжелые элементы // Lenta.ru. — 2011.

Трансурановые элементы.

© 2011–2023 stamp-i-k.ru, Россия, Барнаул, ул. Анатолия 32, +7 (3852) 15-49-47