Турбогенератор

18-04-2023

Разобранный турбогенератор Балаковской АЭС

Турбогенератор — неявнополюсный синхронный генератор, основная функция которого состоит в конвертации механической энергии в работе от паровой или газовой турбины в электрическую при высоких скоростях вращения ротора (3000, 1500 об/мин). Механическая энергия от турбины конвертируется в электрическую при помощи вращающегося магнитного поля, которое создается током постоянного напряжения, протекающего в медной обмотке ротора, что, в свою очередь, приводит к возникновению трёхфазного переменного напряжения и тока в обмотках статора.

Турбогенераторы имеют цилиндрический ротор. Выпускаются с 2p=2, 2p=4, следовательно, имеют высокие частоты вращения. Изготовление турбогенераторов явнополюсной конструкции невозможно по условиям механической прочности

Содержание

История

Один из основателей компании АББ Браун, Чарльз Евгений Ланселот (Charles Eugene Lancelot Brown) построил первый турбогенератор в 1901 году.[1] Это был 6-ти полюсный генератор мощностью 100 кВА.[2]

Появление во второй половине 19-го века мощных паровых турбин привело к тому, что потребовались высокоскоростные турбогенераторы. Первое поколение этих машин имело стационарную магнитную систему и вращающуюся обмотку. Но данная конструкция имеет целый ряд ограничений, одно из них — небольшая мощность. Кроме этого, ротор явнополюсного генератора не способен выдерживать большие центробежные усилия.

Основным вкладом Чарльза Брауна в создание турбогенератора было изобретение ротора, в котором его обмотка (обмотка возбуждения) укладывается в пазы, которые получаются в результате механической обработки поковки. Вторым вкладом Чарльза Брауна в создание турбогенератора была разработка в 1898 году ламинированного цилиндрического ротора. И в конечном итоге, в 1901 году он построил первый турбогенератор. Данная конструкция используется в производстве турбогенераторов по сей день.

Типы турбогенераторов

Турбогенератор постоянного тока ТГ-1М паровоза ЛВ

В зависимости от системы охлаждения турбогенераторы подразделяются на несколько типов: с воздушным, масляным, водородным и водяным охлаждением. Также существуют комбинированные типы, например, генераторы с водородно-водяным охлаждением.

Также существуют специальные турбогенераторы, к примеру, локомотивные, служащие для питания цепей освещения и радиостанции паровоза.

Конструкция турбогенератора

Генератор состоит из двух ключевых компонентов - статора и ротора. Но каждый из них содержит большое число систем и элементов. Ротор - вращающийся компонент генератора и на него воздействуют динамические механические нагрузки, а также электромагнитные и термические. Статор — стационарный компонент турбогенератора, но он также подвержен воздействию существенных динамических нагрузок — вибрационных и крутящих, а также электромагнитных, термических и высоковольтных.

Возбуждение ротора генератора

Первоначальный (возбуждающий) постоянный ток ротора генератора подается на него с возбудителя генератора. Обычно возбудитель соосно соединен упругой муфтой с валом генератора и является продолжением системы турбина-генератор-возбудитель. Хотя на крупных электрических станциях предусмотрено и резервное возбуждение ротора генератора. Такое возбуждение происходит от не соединенного с ротором генератора возбудителя. Такие возбудители переменного тока приводятся в действие своим электродвигателем переменного трехфазного тока и включены как резерв в схему сразу нескольких турбоустановок.

Литература

  • Вольдек А. И. Электрические машины. Энергия. Л. 1978
  • Operation and Maintenance of Large Turbo Generators, by Geoff Klempner and Isidor Kerszenbaum, ISBN 0-471-61447-5, 2004

Примечания

  1. The Growth of Turbogenerators, by K. Abegg, 1973, The Royal Society.
  2. The Evolution of the Synchronous Machine, by Proffesor Gerhard Neidhofer, Engineering Science and Education Journal, October 1992.

Турбогенератор.

© 2011–2023 stamp-i-k.ru, Россия, Барнаул, ул. Анатолия 32, +7 (3852) 15-49-47