Уравнение Ван-дер-Ваальса

09-10-2023

Уравнение состояния
Статья является частью серии «Термодинамика».
Уравнение состояния идеального газа
Уравнение Ван-дер-Ваальса
Уравнение Дитеричи
Уравнение состояния Редлиха — Квонга
Уравнение состояния Барнера — Адлера
Уравнение состояния Суги — Лю
Уравнение состояния Бенедикта — Вебба — Рубина
Уравнение состояния Ли — Эрбара — Эдмистера
Разделы термодинамики
Начала термодинамики
Уравнение состояния
Термодинамические величины
Термодинамические потенциалы
Термодинамические циклы
Фазовые переходы
править
См. также «Физический портал»

Уравнение состояния газа Ван-дер-Ваальса — уравнение, связывающее основные термодинамические величины в модели газа Ван-дер-Ваальса.

Хотя модель идеального газа хорошо описывает поведение реальных газов при низких давлениях и высоких температурах, в других условиях её соответствие с опытом гораздо хуже. В частности, это проявляется в том, что реальные газы могут быть переведены в жидкое и даже в твёрдое состояние, а идеальные — не могут.

Для более точного описания поведения реальных газов при низких температурах была создана модель газа Ван-дер-Ваальса, учитывающая силы межмолекулярного взаимодействия. В этой модели внутренняя энергия становится функцией не только температуры, но и объёма.

Содержание

Уравнение состояния

Термическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлением, объёмом и температурой.

Для одного моля газа Ван-дер-Ваальса оно имеет вид:

где

Видно, что это уравнение фактически является уравнением состояния идеального газа с двумя поправками. Поправка учитывает силы притяжения между молекулами (давление на стенку уменьшается, так как есть силы, втягивающие молекулы приграничного слоя внутрь), поправка  — силы отталкивания (из общего объёма вычитаем объём, занимаемый молекулами).

Для молей газа Ван-дер-Ваальса уравнение состояния выглядит так:

где

Внутренняя энергия газа Ван-дер-Ваальса

Потенциальная энергия межмолекулярных сил взаимодействия вычисляется как работа, которую совершают эти силы, при разведении молекул на бесконечность:


 U_p = \int\limits_V^\mathcal{1} (-\frac{a}{V^2})\,dV = \frac{a}{V} \Bigr|_V^\mathcal{1} = - \frac{a}{V}

Внутренняя энергия газа Ван-дер-Ваальса складывается из его кинетической энергии (энергии теплового движения молекул) и только что нами посчитанной потенциальной. Так, для одного моль газа:


U = C_V T - \frac{a}{V} \!

где  — молярная теплоёмкость при постоянном объёме, которая предполагается не зависящей от температуры.

Критические параметры

Критическими параметрами газа называются значения его макропараметров (давления, объёма и температуры) в критической точке, т.е. в таком состоянии, когда жидкая и газообразная фазы вещества неразличимы. Найдем эти параметры для газа Ван-дер-Ваальса, для чего преобразуем уравнение состояния:

Мы получили уравнение третьей степени относительно .

В критической точке все три корня уравнения сливаются в один, поэтому предыдущее уравнение эквивалентно следующему:

Приравняв коэффициенты при соответствующих степенях , получим равенства:

Из них вычислим значения критических параметров...

...и критического коэффициента:

Приведённые параметры

Приведённые параметры определяются как отношения

Если подставить в уравнение Ван-дер-Ваальса получится приведённое уравнение состояния.

Стоит отметить, что если вещества обладают двумя одинаковыми приведёнными параметрами из трёх, то и третьи приведённые параметры у них совпадают.

Недостатки уравнения Ван-дер-Ваальса

1. Для реальных веществ
2. Для реальных веществ (скорее, )
3. Уравнение Ван-дер-Ваальса расходится с экспериментом в области двухфазных состояний.

См. также

Литература

  1. Сивухин Д. В. Общий курс физики. — М.: Наука, 1975. — Т. II. Термодинамика и молекулярная физика. — 519 с.
  2. Шаблон:Книга:Матвеев А.Н.: Молекулярная физика
  3. P.W. Atkins: Physical chemistry

Уравнение Ван-дер-Ваальса.

© 2011–2023 stamp-i-k.ru, Россия, Барнаул, ул. Анатолия 32, +7 (3852) 15-49-47