Экспоненциальная функция

20-08-2023

График экспоненты.
Касательная в нуле у функции наклонена на
Рядом для примера показаны (точками) и (пунктиром)

Экспонента — показательная функция , где e — основание натуральных логарифмов ().

Содержание

Определение

Экспоненциальная функция может быть определена различными эквивалентными способами. Например, через ряд Тейлора:

или через предел:

Здесь x — любое комплексное число.

Свойства

  • , в частности
  • Экспонента определена на всей вещественной оси. Она всюду возрастает и строго больше нуля.
  • Экспонента является выпуклой функцией.
  • Обратная функция к ней — натуральный логарифм .
  • Фурье-образ экспоненты не существует
  • однако преобразование Лапласа существует
  • Производная в нуле равна 1, поэтому касательная к экспоненте в этой точке проходит под углом 45°.
  • Основное функциональное свойство экспоненты, как и всякой показательной функции:
    .
    • Непрерывная функция с таким свойством либо тождественно равна 0, либо имеет вид , где c — некоторая константа.

Комплексная экспонента

График экспоненты в комплексной плоскости.
Легенда

Комплексная экспонента — математическая функция, задаваемая соотношением , где есть комплексное число. Комплексная экспонента определяется как аналитическое продолжение экспоненты вещественного переменного :

Определим формальное выражение

.

Определенное таким образом выражение на вещественной оси будет совпадать с классической вещественной экспонентой. Для полной корректности построения необходимо доказать аналитичность функции , то есть показать, что разлагается в некоторый сходящийся к данной функции ряд. Покажем это:

Сходимость данного ряда легко доказывается:

.

Ряд всюду сходится абсолютно, то есть вообще всюду сходится, таким образом, сумма этого ряда в каждой конкретной точке будет определять значение аналитической функции . Согласно теореме единственности, полученное продолжение будет единственно, следовательно, на комплексной плоскости функция всюду определена и аналитична.

Свойства

Вариации и обобщения

Аналогично экспонента определяется для элемента произвольной ассоциативной алгебры. В конкретном случае требуется также доказательство того, что указанные пределы существуют.

Матричная экспонента

Экспоненту от квадратной матрицы (или линейного оператора) можно формально определить, подставив матрицу в соответствующий ряд:

Определённый таким образом ряд сходится для любого оператора с ограниченной нормой, поскольку мажорируется рядом для экспоненты нормы Следовательно, экспонента от матрицы всегда определена и сама является матрицей.

С помощью матричной экспоненты легко задать вид решения линейного дифференциального уравнения с постоянными коэффициентами: уравнение с начальным условием имеет своим решением

Обратная функция

Обратной функцией к экспоненциальной функции является натуральный логарифм. Обозначается :

См. также

Литература

  • Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. — Издание 5-е, исправленное. — М.: Наука, 1987. — 688 с.
  • Хапланов М. Г. Теория функции комплексного переменного (краткий курс). — Издание 2-е, исправленное. — М.: Просвещение, 1965. — 209 с.


Экспоненциальная функция.

© 2011–2023 stamp-i-k.ru, Россия, Барнаул, ул. Анатолия 32, +7 (3852) 15-49-47