Спираль

27-09-2023

В математике, спираль — это кривая, которая огибает некоторую центральную точку или ось, постепенно приближаясь или удаляясь от неё, в зависимости от направления обхода кривой.

Содержание

Двумерные спирали

Двумерную спираль можно описать в полярных координатах, определив радиус r как непрерывную монотонную функцию от угла θ. Окружность можно считать вырожденным частным случаем спирали (функция не строго монотонна, а является константой).

Некоторые из наиболее важных типов двумерных спиралей:

Трёхмерные спирали

Как и в двумерном случае, r — непрерывную монотонную функцию от θ.

Для простых трёхмерных спиралей третья переменная h — также непрерывная монотонная функция от θ. Например, коническая винтовая линия может быть определена как спираль на конической поверхности с расстоянием от вершины как экспоненциальной функцией от θ.

Для сложных трёхмерных спиралей, как, например, сферическая спираль, h возрастает с ростом θ с одной стороны от точки и убывает — с другой.

Сферическая спираль

Сферическая спираль (локсодрома) — это кривая на сфере, пересекающая все меридианы под одним углом (не прямым). Эта кривая имеет бесконечное число витков. Расстояние между ними убывает по мере приближения к полюсам.

Тела, имеющие форму спирали

Литература

  • Cook, T., 1903. Spirals in nature and art. Nature 68 (1761), 296.
  • Cook, T., 1979. The curves of life. Dover, New York.
  • Habib, Z., Sakai, M., 2005. Spiral transition curves and their applications. Scientiae Mathematicae Japonicae 61 (2), 195 – 206.
  • Dimulyo, S., Habib, Z., Sakai, M., 2009. Fair cubic transition between two circles with one circle inside or tangent to the other. Numerical Algorithms 51, 461–476 [1].
  • Harary, G., Tal, A., 2011. The natural 3D spiral. Computer Graphics Forum 30 (2), 237 – 246 [2].
  • Xu, L., Mould, D., 2009. Magnetic curves: curvature-controlled aesthetic curves using magnetic fields. In: Deussen, O., Hall, P. (Eds.), Computational Aesthetics in Graphics, Visualization, and Imaging. The Eurographics Association [3].
  • Wang, Y., Zhao, B., Zhang, L., Xu, J., Wang, K., Wang, S., 2004. Designing fair curves using monotone curvature pieces. Computer Aided Geometric Design 21 (5), 515–527 [4].
  • A. Kurnosenko. Applying inversion to construct planar, rational spirals that satisfy two-point G2 Hermite data. Computer Aided Geometric Design, 27(3), 262-280, 2010 [5].
  • A. Kurnosenko. Two-point G2 Hermite interpolation with spirals by inversion of hyperbola. Computer Aided Geometric Design, 27(6), 474-481, 2010.
  • Miura, K.T., 2006. A general equation of aesthetic curves and its self-affinity. Computer-Aided Design and Applications 3 (1–4), 457–464 [6].
  • Miura, K., Sone, J., Yamashita, A., Kaneko, T., 2005. Derivation of a general formula of aesthetic curves. In: 8th International Conference on Humans and Computers (HC2005). Aizu-Wakamutsu, Japan, pp. 166 – 171 [7].
  • Meek, D., Walton, D., 1989. The use of Cornu spirals in drawing planar curves of controlled curvature. Journal of Computational and Applied Mathematics 25 (1), 69–78 [8].
  • Farin, G., 2006. Class A Bézier curves. Computer Aided Geometric Design 23 (7), 573–581 [9].
  • Farouki, R.T., 1997. Pythagorean-hodograph quintic transition curves of monotone curvature. Computer-Aided Design 29 (9), 601–606.
  • Yoshida, N., Saito, T., 2006. Interactive aesthetic curve segments. The Visual Computer 22 (9), 896–905 [10].
  • Yoshida, N., Saito, T., 2007. Quasi-aesthetic curves in rational cubic Bézier forms. Computer-Aided Design and Applications 4 (9–10), 477–486 [11].
  • Ziatdinov, R., Yoshida, N., Kim, T., 2012. Analytic parametric equations of log-aesthetic curves in terms of incomplete gamma functions. Computer Aided Geometric Design 29 (2), 129 – 140 [13].
  • Ziatdinov, R., 2012. Family of superspirals with completely monotonic curvature given in terms of Gauss hypergeometric function. Computer Aided Geometric Design 29(7): 510-518, 2012 [14].

См. также


Спираль.

© 2011–2023 stamp-i-k.ru, Россия, Барнаул, ул. Анатолия 32, +7 (3852) 15-49-47