Унитарное преобразование

27-09-2023

Унитарный оператор — ограниченный линейный оператор U : H → H на гильбертовом пространстве H, который удовлетворяет соотношению

где U — эрмитово сопряжённый к U оператор, и I : H → H единичный оператор. Это свойство эквивалентно следующим:

  1. U сохраняет скалярное произведение 〈  ,  〉 гильбертового пространства, то есть, для всех векторов x и y в гильбертовом пространстве,
  2. U — сюръективный оператор.

Это также эквивалентно, казалось бы более слабому условию:

  1. U сохраняет скалярное произведение, и
  2. образ U — плотное множество.

Чтобы увидеть это, заметим, что U изометричен (а поэтому является ограниченным линейным оператором). Это следует из того, что U сохраняет скалярное произведение. Тот факт, что образ U - плотное множество, даёт, что обратный оператор также ограничен. Очевидно, что U−1 = U.

Унитарный элемент это обобщение понятия унитарного оператора. В унитарной *-алгебре, элемент U алгебры называется унитарным элементом если

где I единичный элемент.[1]

Свойства унитарных преобразований:

  • оператор унитарного преобразования всегда обратим.
  • если оператор эрмитов, то оператор унитарен.

Содержание

Примеры

  • Вращения в R2 это простейший нетривиальный пример унитарного оператора. Вращения не изменяют длины векторов и угол между двумя векторами. Этот пример также может быть обобщён на R3.
  • В векторном пространстве C комплексных чисел, умножение на число с модулем 1, т. е. число вида ei θ для θR, есть унитарным оператором. θ называется фазой. Можно заметить, что значение θ кратное 2π не влияет на результат, поэтому множество независимых унитарных операторов в C топологически эквивалентно окружности.

Свойства

  • Спектр унитарного оператора U лежит на единичной окружности. Это можно увидеть из спектральной теоремы для нормального оператора. По этой теореме, U унитарно эквивалентно умножению на измеримую по Борелю функцию f на L²(μ), для некоторого пространства с мерой (X, μ). Из U U* = I следует |f(x)|² = 1.

Унитарные преобразования в физике

В квантовой механике состояние квантовой системы описывается вектором в гильбертовом пространстве. Норма вектора состояния изолированной квантовой системы описывает вероятность найти систему хоть в каком-либо состоянии, а значит, она обязана равняться единице. Соответственно, эволюция квантовой системы во времени — это некоторый оператор, зависящий от времени, и, из-за требования сохранения нормы, он является унитарным. Неунитарные операторы эволюции (или, что то же самое, неэрмитовые гамильтонианы) для изолированной квантовой системы запрещены в квантовой механике.

Примечания

  1. Doran Robert S. Characterizations of C*-Algebras: The Gelfand-Naimark Theorems. — New York: Marcel Dekker, 1986. — ISBN 0824775694

Унитарное преобразование.

© 2011–2023 stamp-i-k.ru, Россия, Барнаул, ул. Анатолия 32, +7 (3852) 15-49-47